Weights of linear codes and strongly regular normed spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remotality and proximinality in normed linear spaces

In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.

متن کامل

Fuzzy $e$-regular spaces and strongly $e$-irresolute mappings

The aim of this paper is to introduce fuzzy ($e$, almost) $e^{*}$-regular spaces in $check{S}$ostak's fuzzy topological spaces. Using the $r$-fuzzy $e$-closed sets, we define $r$-($r$-$theta$-, $r$-$etheta$-) $e$-cluster points and their properties. Moreover, we investigate the relations among $r$-($r$-$theta$-, $r$-$etheta$-) $e$-cluster points, $r$-fuzzy ($e$, almost) $e^{*}$-regular spaces a...

متن کامل

Linear codes and weights

Let F be a finite field with q elements. A k dimensional subspace C of the vector space Fn of all n-tuples over F is called a linear code of length n and dimension k. Algebraically, C is just a k-dimensional vector space over F. However, as a particular subspace of Fn, C inherits some metric properties. Specifically, for every v E Fn, the weight of v, denoted by wt( v), is defined to be the num...

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Regular parcial linear spaces admitting (1;≤ k)-identifying codes

Let (P ,L, I) be a partial linear space and X ⊆ P ∪ L. Let us denote by (X)I = ⋃ x∈X{y : yIx} and by [X ] = (X)I ∪ X . With this terminology a partial linear space (P ,L, I) is said to admit a (1,≤ k)-identifying code if and only if the sets [X ] are mutually different for all X ⊆ P ∪L with |X | ≤ k. In this paper we give a characterization of k-regular partial linear spaces admitting a (1,≤ k)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1972

ISSN: 0012-365X

DOI: 10.1016/0012-365x(72)90024-6