Weights of linear codes and strongly regular normed spaces
نویسندگان
چکیده
منابع مشابه
Remotality and proximinality in normed linear spaces
In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.
متن کاملFuzzy $e$-regular spaces and strongly $e$-irresolute mappings
The aim of this paper is to introduce fuzzy ($e$, almost) $e^{*}$-regular spaces in $check{S}$ostak's fuzzy topological spaces. Using the $r$-fuzzy $e$-closed sets, we define $r$-($r$-$theta$-, $r$-$etheta$-) $e$-cluster points and their properties. Moreover, we investigate the relations among $r$-($r$-$theta$-, $r$-$etheta$-) $e$-cluster points, $r$-fuzzy ($e$, almost) $e^{*}$-regular spaces a...
متن کاملLinear codes and weights
Let F be a finite field with q elements. A k dimensional subspace C of the vector space Fn of all n-tuples over F is called a linear code of length n and dimension k. Algebraically, C is just a k-dimensional vector space over F. However, as a particular subspace of Fn, C inherits some metric properties. Specifically, for every v E Fn, the weight of v, denoted by wt( v), is defined to be the num...
متن کاملEmbedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
متن کاملRegular parcial linear spaces admitting (1;≤ k)-identifying codes
Let (P ,L, I) be a partial linear space and X ⊆ P ∪ L. Let us denote by (X)I = ⋃ x∈X{y : yIx} and by [X ] = (X)I ∪ X . With this terminology a partial linear space (P ,L, I) is said to admit a (1,≤ k)-identifying code if and only if the sets [X ] are mutually different for all X ⊆ P ∪L with |X | ≤ k. In this paper we give a characterization of k-regular partial linear spaces admitting a (1,≤ k)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1972
ISSN: 0012-365X
DOI: 10.1016/0012-365x(72)90024-6